MATH 579 Exam 8 Solutions

1. Solve the recurrence given by $a_{0}=a_{1}=2, a_{n}=-2 a_{n-1}-a_{n-2}(n \geq 2)$.

The characteristic equation is $r^{2}+2 r+1=0$, which has double root $r=-1$. Hence the general equation is $a_{n}=\alpha(-1)^{n}+\beta n(-1)^{n} .2=a_{0}=\alpha(-1)^{0}+\beta 0(-1)^{0}=\alpha$, and $2=a_{1}=$ $\alpha(-1)^{1}+\beta 1(-1)^{1}=-\alpha-\beta$, so $\beta=-4$. Hence the solution is $a_{n}=2(-1)^{n}-4 n(-1)^{n}$.
2. Solve the recurrence given by $a_{0}=3, a_{n}=3 a_{n-1}-4(n \geq 1)$.

The characteristic equation of the homogeneous relation is $r-3=0$, which has root $r=3$. Hence the general homogeneous solution is $a_{n}=\alpha 3^{n}$. To solve the nonhomogeneous relation, we guess a constant polynomial $a_{n}=A . A=3 A-4$, so $A=2$. Combining, the general nonhomogeneous solution is $a_{n}=\alpha 3^{n}+2.3=a_{0}=\alpha 3^{0}+2=\alpha+2$, so $\alpha=1$. Hence, the solution is $a_{n}=3^{n}+2$.
3. How many ways are there to climb a flight of n stairs, where each of your steps may move you one or two stairs higher?

Let a_{n} denote the desired quantity. We have $a_{0}=1, a_{1}=1$ by inspection. Your last step might have been two stairs (in which case you just climbed $n-2$ stairs in any legal way), or it might have been one stair (in which case you just climbed $n-1$ stairs in any legal way). Hence $a_{n}=a_{n-1}+a_{n-2}$, the familiar Fibonacci relation. It has characteristic equation $r^{2}-r-1=0$, with roots $r_{1}=\frac{1+\sqrt{5}}{2}, r_{2}=\frac{1-\sqrt{5}}{2}$. The general solution is $a_{n}=\alpha r_{1}^{n}+\beta r_{2}^{n}$. $1=a_{0}=\alpha+\beta, 1=a_{1}=\alpha r_{1}+\beta r_{2}$. This has solution $\alpha=\frac{r_{1}}{\sqrt{5}}, \beta=-\frac{r_{2}}{\sqrt{5}}$, so the solution is $a_{n}=\left(\frac{1}{\sqrt{5}}\right)\left(r_{1}^{n+1}-r_{2}^{n+1}\right)$.
4. Codewords (strings) from the alphabet $\{0,1,2\}$ are called legitimate if they have an even number of 0 's. How many legitimate codewords are there of length k ?

Let a_{k} denote the desired quantity. There are $3^{k}-a_{k}$ illegitimate codewords of length k. Starting with a legitimate codeword of length k, remove the last letter. If we removed a 1 or 2 , what remains is legitimate; if we removed a 0 , what remains is illegitimate. Hence $a_{k}=2 a_{k-1}+\left(3^{k-1}-a_{k-1}\right)=a_{k-1}+3^{k-1}$ is the relation. We have $a_{0}=1$. The homogeneous relation has general solution $a_{k}=\alpha(1)^{k}=\alpha$. We guess $a_{k}=A 3^{k}$ for a nonhomogeneous solution. $A 3^{k}=A 3^{k-1}+3^{k-1}$, so $A=0.5$. Our general nonhomogeneous solution is $a_{k}=\alpha+3^{k} / 2.1=a_{0}=\alpha+0.5$, so $\alpha=0.5$ and our solution is $a_{k}=\frac{1+3^{k}}{2}$.
5. You open a holiday savings account in early January with $\$ 500$ you won in a scratch game. It pays the princely sum of 1% interest, compounded monthly. You have $\$ 20$ automatically deposited at the end of each of your twice-monthly pay periods; your deposits begin to earn interest in the month after they are made. On December 19, you're ready to shop. How much will you have saved up?

Let a_{k} denote the amount at the end of month k, where a_{1} is how much at the end of January. $a_{0}=500$, and $a_{k+1}=\left(1+\frac{0.01}{12}\right) a_{k}+40=\frac{1201}{1200} a_{k}+40$. The homogenous relation has general solution $a_{k}=\alpha\left(\frac{1201}{1200}\right)^{k}$. We guess constant polynomial A for the nonhomogeneous relation, getting $A=\frac{1201}{1200} A+40$. This has solution $A=-48000$. Hence the general nonhomogeneous solution is $a_{k}=\alpha\left(\frac{1201}{1200}\right)^{k}-48000$. We have $500=a_{0}=\alpha-48000$, so $\alpha=48500$. Hence the solution is $a_{k}=48500\left(\frac{1201}{1200}\right)^{k}-48000$. That's a lot of work, when all we really want is $a_{11}=\$ 946.44$, the balance at the end of November. On Dec. 15 you put another 20 in , for a grand total of $\$ 966.44$. Of that, you've put in $\$ 960$ yourself, and earned $\$ 6.44$ in interest. Compound interest is very powerful, but not piddly amounts like 1% for a year.

